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The “Big Data” Era

There is an ever-increasing gap between the amount of available information 
and the human ability to derive high-value content from it

Human ability to 
understand big data

Part 1 of 6: Introduction
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Challenge #1: Database Exploration

● Data is often stored in a database system

● Database Exploration: User cannot translate his / her interest into a database query

○ Must resort to a manual exploration process

Database users lack automated tools for efficient data exploration

Part 1 of 6: Introduction
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Challenge #2: Data Annotation

Where to obtain annotated data?

Existing solutions: crowdsourcing, manual labeling by IT teams, etc

“ML for everyone” needs tools for accurate and automatic annotation of large datasets

Part 1 of 6: Introduction
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Human-in-the-Loop Model Development

DB users need automated 
data exploration tools

ML platforms need efficient 
data annotation methods

Objective: Build an accurate classifier of the user interest from his / her feedback

Challenge

User annotates a subset of points 
as “interesting” or “not interesting”

User annotates only a well-chosen 
selection of data points

User Feedback

Build a classification model 
predicting objects of interest

Train a classifier than can 
accurately label the entire data

Final Classifier

Part 1 of 6: Introduction
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HiL can effectively deal with both data exploration and annotation challenges!



Active Learning

Part 1 of 6: Introduction
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Challenge: How to minimize the user annotation effort?

Active Learning: ML methods for training accurate classifiers with minimal labeled data

AL needs fewer labeled examples 
than traditional ML techniques 



Active Learning over Large Datasets

AIDE: K. Dimitriadou, O. Papaemmanouil, and Y. Diao. “Aide: an active learning approach for interactive data exploration”. Transactions on Knowledge and Data Engineering, 2016. 
LifeJoin: A. Cheung, A. Solar-Lezama, and S. Madden. “Using program synthesis for social recommendations.” Conference on Information and Knowledge Management (CIKM), 2012. 
Simple Margin (SM): S. Tong and D. Koller. Support Vector Machine active learning with applications to text classification. Journal of Machine Learning Research, 2:45–66, 2001.
Query-by-Disagreement (QBD): B. Settles. Active Learning. Morgan & Claypool Publishers, 2012.

Part 1 of 6: Introduction

8

6D model, 0.01% selectivity 4D and 6D models, 0.01% selectivity

Active Learning Techniques Data Exploration Systems

Dataset: Sloan Digital Sky Survey (SDSS), 1% of PhotoObjAll table, 1.8M tuples



Our Contributions

Objective: Design new AL techniques that:

➔ Overcome the slow start problem

➔ Provide interactive performance for user labeling

Contributions:

➔ Version Space Algorithms: AL algorithm with strong theoretical guarantees on performance 

and optimizations for interactive performance

➔ Factorization: Leverage additional information from the user to expedite convergence

➔ Factorized Classifiers: A new classification model mimicking the human decision-making

Part 1 of 6: Introduction
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Goal: find              matching the user interest with minimal annotation effort

Overview of Active Learning
Notation

● Dataset: 

● User Label:

● Hypothesis Set: set of classifiers                
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Part 2 of 6: Version Space Algorithms

● Labeled Set: 

● Unlabeled Set:



Active Learning Strategies

Main Idea: incrementally build      by selecting the most informative points to label

Uncertainty Sampling
➔ Information = “Uncertainty”
➔ Slow-converging, but efficient

Part 2 of 6: Version Space Algorithms
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And several other approaches…
➔ Entropy minimization
➔ Expected error reduction
➔ Information-theory based

B. Settles. Active Learning. Morgan & Claypool Publishers, 2012



Why Version Space Algorithms?
➔ They provide strong theoretical guarantees on convergence speed

Version Space Algorithms

What is the Version Space?
➔ Set of all classifiers consistent with the labeled data

Objective: Reduce     as quickly as possible

Part 2 of 6: Version Space Algorithms
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Properties of the Version Space
➔ The optimal classifier      is always inside      (assuming no labeling mistakes)
➔ It shrinks as more data is labeled



Example: Homogeneous Linear Classifiers (2D) 

Part 2 of 6: Version Space Algorithms
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Generalized Binary Search (GBS)

Bisection Rule: choose the data point splitting the version space in half

S. Dasgupta. Analysis of a greedy active learning strategy. In Advances in Neural Information Processing Systems 17, pages 337–344, 2005.
K. Trapeznikov, V. Saligrama, and D. Castañón. Active boosted learning (ActBoost). In International Conference on Artificial Intelligence and Statistics, volume 14, 2011.

➔ Cut probabilities: 

➔ Selection strategy: 

Part 2 of 6: Version Space Algorithms
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Theoretical Guarantees (GBS)

➔      : an Active Learning algorithm

➔    : the classifier             matching the user preference

➔                  : # of queries that      takes to identify 

➔              : average cost of      across all possible labelings 

Let                                  . Then, the GBS strategy satisfies:

S. Dasgupta. Analysis of a greedy active learning strategy. In Advances in Neural Information Processing Systems 17, pages 337–344, 2005.
D. Golovin and A. Krause. Adaptive submodularity: Theory and applications in active learning and stochastic optimization. Journal of Artificial Intelligence Research, 42:427–486, 2011

Part 2 of 6: Version Space Algorithms
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Limitations of VS Algorithms
➔ The GBS is too expensive to run in practice
➔ In the literature, several approximations have been introduced:

Slow Convergence Fast Convergence

Low Time Cost SM, QBD

High Time Cost ALuMA, KQBC

Simple Margin (SM): S. Tong and D. Koller. Support Vector Machine active learning with applications to text classification. Journal of Machine Learning Research, 2:45–66, 2001.
Kernel Query-by-Committee (KQBC): R. Gilad-Bachrach, A. Navot, and N. Tishby. Query-by-committee made real. In Advances in Neural Information Processing Systems 18, 2006.
Query-by-Disagreement (QBD): B. Settles. Active Learning. Morgan & Claypool Publishers, 2012.
ALuMA: A. Gonen, S. Sabato, and S. Shalev-Shwartz. Efficient active learning of halfspaces: an aggressive approach. Journal of Machine Learning Research, 14(1): 2583–2615, 2013

We propose OptVS, an optimized VS algorithm offering: 
➢ Fast convergence speed
➢ Low running time 
➢ Theoretical guarantees

OptVS

Part 2 of 6: Version Space Algorithms
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Problem: Parameter space is very high-dimensional, possibly infinite!
➔ Estimating the version space size is intractable.

OptVS: Theoretical Formulation

Objective: Efficiently realize the GBS algorithm over kernel classifiers

Kernel Classifiers: Given a kernel     and its feature map                       , we define:

Part 2 of 6: Version Space Algorithms

18



Dimensionality Reduction

Our theoretical result: The cut probabilities for kernel classifiers satisfy:

➔                                  : dataset
➔                                 : user-labeled points

➔                       :               kernel matrix
➔     : Cholesky decomposition of 

Part 2 of 6: Version Space Algorithms
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Computation reduced to the linear case, scaling with the number of labeled points

Reduced Version Space Partial Cholesky Factor



Computing the Cut Probabilities

Simple matrix manipulations
Hit-and-Run + Rounding

for efficient sample generation
Sampling estimation via 
“Law of Large Numbers”

With the dimensionality controlled, how do we estimate the cut probabilities?

Part 2 of 6: Version Space Algorithms
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Probability Estimation and Optimizations

Hit-and-Run 
➔ SOTA algorithm for sampling uniformly over convex bodies
➔ Generates a Markov Chain inside W
➔ Efficient sample generation

W

Probability Estimation
➔ Law of Large Numbers for Markov Chains
➔ Draws samples from a single chain (fast!)

Part 2 of 6: Version Space Algorithms
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Rounding
➔ Preprocessing step of Hit-and-Run for improved mixing time
➔ Caching: re-use previous transformations to warm-start computation
➔ Numerical Stability: adapt the algorithm to the particular shape of the VS



Experimental Evaluation
❏ Datasets

❏ Sloan Digital Sky Survey (SDSS)
❏ PhotoObjAll table, 190 million tuples
❏ 1% sample pool, 1.8 million tuples, 4.9GB
❏ 11 user interest patterns from the SDSS query release

❏ Car database
❏ Extracted from teoalida.com
❏ 5,622 tuples
❏ 18 user interest patterns from a user study

❏ Algorithms
❏ VS Algorithms: Simple Margin (SM), Query-by-Disagreement (QBD), ALuMA
❏ Data Exploration: Dual Space Model (DSM)

Simple Margin (SM): S. Tong and D. Koller. Support Vector Machine active learning with applications to text classification. Journal of Machine Learning Research, 2:45–66, 2001.
Query-by-Disagreement (QBD): B. Settles. Active Learning. Morgan & Claypool Publishers, 2012.
ALuMA: A. Gonen, S. Sabato, and S. Shalev-Shwartz. Efficient active learning of halfspaces: an aggressive approach. Journal of Machine Learning Research, 14(1): 2583–2615, 2013
Dual-Space Model (DSM): E. Huang, L. Peng, L. D. Palma, A. Abdelkafi, A. Liu, and Y. Diao. Optimization for active learning-based interactive database exploration. Proceedings of the 
VLDB Endowment, 12(1):71–84, 2018.

Part 2 of 6: Version Space Algorithms
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https://www.teoalida.com/


Evaluating OptVS (Performance)

F-score for Car 10 (0.36%, 8D, 31D enc) F-score for SDSS 02 (0.1%, 2D) 

OptVS outperforms state-of-the-art VS algorithms and unfactorized DSM

Part 2 of 6: Version Space Algorithms
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Evaluating OptVS (Efficiency)

Time for Car 05 (0.23%, 6D, 418D enc) Time for SDSS 02 (0.1%, 2D) 

OptVS runs under interactive performance at all times

Part 2 of 6: Version Space Algorithms
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Limitations of Active Learning

Part 3 of 6: A Factorized Version Space Algorithm

In practice, our VS technique can 
still suffer from slow convergence!

26

SDSS 06 - 6D, 0.01% selectivity

DSM can improve upon AL by 
leveraging a factorization from the user

Can we extend our VS techniques to leverage the factorization information?



The global decision (interesting or not) is factorized into simple yes / no questions

What is Factorization?

Idea: Leverage additional insights from the user labeling process

Example: A customer looking for cars of interest may have several concerns:

Q1: Is the gas mileage good enough?

Q2: Is the vehicle spacious enough?

Q3: Is the color a preferred one?

We wish to leverage: ➔ Which attributes are involved in each question
➔ The user feedback (yes / no) for each question 

Part 3 of 6: A Factorized Version Space Algorithm
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Factorization leads to a faster reduction of the VS!

Factorized Version Space: Intuition

Part 3 of 6: A Factorized Version Space Algorithm
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Factorization Structure
{Color}, {Size}



Factorized Version Space: Formalism
Given a factorization                      , we define:

Factorized Hypothesis Set: we model one classifier per subspace

where each tuple                              is viewed as a multi-label classifier

Factorized Version Space: applying the usual definition, we have

where the version subspaces are defined as

Part 3 of 6: A Factorized Version Space Algorithm
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Thus, we only need to repeat the usual VS computations for each subspace!

Factorized Bisection Rule

By applying the VS bisection rule over      , we obtain: 

,      where 

In particular, we can show that the above expression is equivalent to:

,      where 

Part 3 of 6: A Factorized Version Space Algorithm
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Let                                  . Then, our Factorized VS strategy satisfies:

Theoretical Guarantees

➔      : an Active Learning algorithm making use of the partial labels information

➔    : the classifier               matching the user preference in each subspace

➔                    : # of queries that       takes to identify     in every subspaces

➔               : average cost of       across all possible labelings 

S. Dasgupta. Analysis of a greedy active learning strategy. In Advances in Neural Information Processing Systems 17, pages 337–344, 2005.
D. Golovin and A. Krause. Adaptive submodularity: Theory and applications in active learning and stochastic optimization. Journal of Artificial Intelligence Research, 42:427–486, 2011

Part 3 of 6: A Factorized Version Space Algorithm
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SDSS Results

SDSS 06 (0.01%, 6D) SDSS 11 (0.1%, 5D) 

FactVS outperforms both DSM and AL algorithms in high-dimensional exploration!

Part 3 of 6: A Factorized Version Space Algorithm
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Questions that remain...

What if the user does not know the factorization? 

➔ Lack understanding of own decision-making process
➔ Unfamiliarity with the data distribution

Can we learn it from the labeled data?

Part 4 of 6: Learning a Factorized Classifier
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Questions that remain...

Can we learn a classifier that mimics the user decision-making process? 

Advantages: accuracy and interpretability

+ = Final Prediction 

Part 4 of 6: Learning a Factorized Classifier

35



Learning a Factorized Classifier

Intuition: The final prediction is the combination of simple, independent decisions

Number of SubspacesDecision Function

Challenge: Several interconnected components to learn

Part 4 of 6: Learning a Factorized Classifier
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Subspatial Classification Models
Each label Y in {0, 1}}}}}depends

only on a subset of attributes A1 A



Conjunctive Assumption

Not very restrictive since:

➔ Every boolean function can be written in Conjunctive Normal Form (CNF)

➔ Backed up by our user study

Conjunctivity: Model the user decision-making as a list of requirements  

Part 4 of 6: Learning a Factorized Classifier
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Linearity Assumption

Advantages: 

➔ Support for complex user interest patterns

➔ Easy estimation of factorization structure

➔ Efficient optimization (parameterized model)

Linearity: Subspace labels can be accurately modeled by logistic regressors  

Part 4 of 6: Learning a Factorized Classifier
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The Factorized Linear Model (FLM)

Factorized Linear Model: By putting the previous points together, we define:

Non-convex, differentiable optimization problem

Learning Algorithm: Simple minimization of the cross-entropy loss function:

Combination of 
independent, linear classifiers!

Part 4 of 6: Learning a Factorized Classifier
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Feature and Subspace Selection
Objective: Improve interpretability by limiting the number of relevant features per subspace

➔ Irrelevant features = zero weights
➔ Idea: Induce sparsity to the weights by adding penalty terms

Classification Error
Induces an accurate solution

Lasso Penalty
Removes irrelevant 

features in each subspace
Group Lasso Penalty

Removes irrelevant subspaces

Automatic selection of most relevant features and number of subspaces

Part 4 of 6: Learning a Factorized Classifier

40



Practical Example - SDSS Query 09

Attributes: u, g, r, i, z
Query predicate:
Expected Factorization: 
Computed Factorization: Identical

Part 4 of 6: Learning a Factorized Classifier

41



Penalized FLM in Practice - SDSS Query 05

{Rowc, Colc} subspace
Circular pattern

{Ra, Dec} subspace
Rectangular pattern

Attributes: rowc, colc, ra, dec
Query predicate: 
Expected Factorization: 
Computed Factorization: Identical

User interest is modeled as a 
low-dimensional convex 
object in each subspace

Part 4 of 6: Learning a Factorized Classifier
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Experimental Evaluation - Batch Case
Batch setting: SDSS queries, 1.8 million tuples, 50% - 50% train test split

Query SVM FLM VIPR 
[NIPS2012]

05 80 79 73

06 18 0 10

07 90 47 72

08 98 94 88

09 92 100 75

10 89 86 41

11 83 84 71

Query SVM FLM VIPR 
[NIPS2012]

Q5 0.4 3.8 0.5

Q6 16.1 3.8 2.2

Q7 1158.2 3.8 0.6

Q8 45.7 4.2 3.3

Q9 102.9 3.7 1.2

Q10 10.4 3.8 1.2

Q11 3.5 4.1 1.2

➔ FLM approximates the performance of SVM, while 
being interpretable

➔ FLM outperforms VIPR, another interpretable model
➔ FLM can be more efficient for training than SVM

Part 4 of 6: Learning a Factorized Classifier
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Extension to the Active Learning Scenario

Uncertainty Sampling: select the point which the current model is “most uncertain”:

Swapping Algorithm: start with OptVS, then swap to FLM-based Uncertainty Sampling

➔ Enjoys the fast initial convergence of VS-based methods

➔ In later iterations, can profit of FLM’s enhanced classification accuracy

Problem 
Uncertainty Sampling can 
be myopic in its selection

Part 4 of 6: Learning a Factorized Classifier
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Experimental Evaluation - AL Case

F-score for SDSS 09 (1.5%, 5D) 

The Swapping Algorithm approximates FactVS while outperforming non-factorized learners

Part 4 of 6: Learning a Factorized Classifier
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Algorithms
● FLM:SA: Swapping Algorithm

● FLM:US: FLM + Uncertainty Sampling

● FactVS: factorized AL. Leverages extra 

information from the user (factorization, 

subspace labels)

● OptVS: baseline non-factorized AL
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Version Space Algorithms

● Active Learning under Margin Assumptions (ALuMA)
○ Sampling-based approximation of GBS for linear classifiers
○ Extension for kernel classifiers, but is often too costly in practice
○ Strong theoretical guarantees on performance (similar as GBS)

● Simple Margin (SM)
○ SVM-based Uncertainty Sampling strategy, shown to approximately bisect the VS

● Query-by-Disagreement (QBD)
○ Approximates the VS by a positive and a negatively biased classifiers

Kernel Query-by-Committee (KQBC): R. Gilad-Bachrach, A. Navot, and N. Tishby. Query-by-committee made real. In Advances in Neural Information Processing Systems 18, 2006.
ALuMA: A. Gonen, S. Sabato, and S. Shalev-Shwartz. Efficient active learning of halfspaces: an aggressive approach. Journal of Machine Learning Research, 14(1): 2583–2615, 2013
Simple Margin (SM): S. Tong and D. Koller. Support Vector Machine active learning with applications to text classification. Journal of Machine Learning Research, 2:45–66, 2001.
Query-by-Disagreement (QBD): B. Settles. Active Learning. Morgan & Claypool Publishers, 2012. 47
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Human-in-the-Loop Model Development
Data Programming under Weak Supervision

● Snorkel
○ Labeling Function (LF): simple heuristics used for labeling data instances (yes, no, unknown)
○ An accurate classifier can be built without users labeling a single data point

● Snuba
○ Automatic generation of LFs by relying on a “small” labeled set
○ In practice, may still require thousands of labeled examples to reach high accuracy

Snorkel: A. J. Ratner, C. M. De Sa, S. Wu, D. Selsam, and C. Ré. Data programming: Creating large training sets, quickly. In Advances in Neural Information Processing Systems 29, 2016. 
Snuba: P. Varma and C. Ré. Snuba: Automating weak supervision to label training data. Proceedings of the VLDB Endowment, 12(3):223–236, 2018.
Dual-Space Model (DSM): E. Huang, L. Peng, L. D. Palma, A. Abdelkafi, A. Liu, and Y. Diao. Optimization for active learning-based interactive database exploration. Proceedings of the 
VLDB Endowment, 12(1):71–84, 2018. 48
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Interactive Data Exploration
● Dual Space Model (DSM)

○ Convexity: user interest region (or its complement) is convex
○ Polytope model: Automatically labels data examples through a data-space decomposition
○ Can also leverages a factorization from the user



Interpretable ML and Feature Selection

Interpretable ML
● VIPR

○ Assumes that any data point can be locally classified by a small number of features
○ Computes a mapping of data points and low-dimensional projections
○ Contrast to FLM: we assume the final decision is a combination of low dimensional predictions

VIPR: M. Fiterau and A. Dubrawski. Projection retrieval for classification. In Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc., 2012 
Lasso:  R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society (Series B), 58:267–288, 1996. 
Group Lasso: M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B, 2006
Group Lasso for Categorical Variables: J. Chiquet, Y. Grandvalet, and G. Rigaill.  On coding effects in regularized categorical regression. Statistical Modelling, 2016 49

Part 5 of 6: Related Work

Lasso-based Feature Selection
● Lasso

○ Improves the interpretability of linear classifiers in high-dimensions
○ Forces the weight vector to be sparse

● Group Lasso
○ Allows for the selection of groups of features at a time
○ Useful for selecting categorical variables
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Summary

Part 6 of 6: Summary
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To overcome the slow start problem in AL, we developed the following contributions:

➔ OptVS: An optimized VS algorithm providing:

◆ Strong theoretical guarantees on performance

◆ An efficient implementation in time and space

➔ FactVS: A factorized VS algorithm which leverages extra information from the user 

to further expedite convergence

➔ FLM: A learning algorithm for factorized classifiers, capable of decomposing the 

user interest as a combination of low-dimensional convex objects

➔ Swapping Algorithm: an automatically factorized AL strategy that leverages both 

OptVS and FLM to provide an effective data exploration strategy



Thank you! Questions?
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